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ABSTRACT

A water-resistive barrier (WRB) is a material installed on the exterior side of the sheathing to prevent
water intrusion so that building components are not damaged by moisture. A membrane that can change
its water vapor permeability between two states to control water vapor transport into and out of residential
and commercial building wall systems is being developed. This simulation study assesses if this
membrane used as a WRB reduces moisture levels and mold growth risk in exterior walls and building
energy consumption. The developed membrane may require modifications to fully function as a WRB in
contact with liquid water.

Hygrothermal component simulations were conducted for different climate zones, different wall
assemblies, different switching points and permeabilities to identify the most beneficial application cases
and their required perm range and switching control. The study details the required simulation settings
and suggests that the switchable membrane can reduce the water content in the sheathing and reduce the
mold growth risk in the cavity in all climate zones. The effect on energy consumption of the switchable
membrane is not significant. The study also includes recommendations on how to model the material
characteristics of a switchable membrane and recommendations on practical applications for the
switchable membrane.

1. BACKGROUND AND INTRODUCTION

The overall focus of this program is to develop a commercially-viable, adaptive, water-resistive barrier
(WRB) membrane to control water vapor transport into and out of residential and commercial building
enclosures. The proposed membrane is adaptive in that it can change its vapor permeability between two
states - i.e., very low water vapor permeability in one state and high permeability in the other state. As a
result of the adaptive feature, when the temperature and relative humidity (RH) outdoors are high, the
membrane inhibits the ingress of water vapor into the building. However, if the RH in the wall cavity is
high, the membrane will switch to a high permeability state to allow the water vapor to egress to the
outside.

The objective of this simulation study is to determine if a WRB membrane that can switch permeability is
beneficial from a durability and energy perspective. More specifically, the goals are to determine if such a
membrane can reduce moisture levels and mold growth risk in building assemblies, determine the energy
impact of such a membrane, and identify the most beneficial application cases and their required perm
range and switching control.

2. SIMULATION BOUNDARY CONDITIONS AND ASSUMPTIONS

The simulations were carried out with the WUFI® Pro software version 6.2. This hygrothermal
component simulation model requires various inputs that are outlined in this chapter.

2.1 CLIMATE DATA

The boundary conditions acting on the modelled walls are referred to as “climate data” in this section.
These are usually measured weather data for the outdoor climate, and the indoor climate is derived from
the exterior conditions with methods described in standards like ASHRAE Standard 160 [1].



2.1.1 Outdoor Climate

The simulations were performed for the following cities and climate zones (CZ):
e Houston (CZ 2)

Atlanta (CZ 3)

Baltimore (CZ 4)

Seattle (CZ 4 marine)

Chicago (CZ 5)

Weather data for those locations is provided in the WUFI® database. For most locations, multiple years
of data are available. It was decided to select the so called “ASHRAE Year 3” climate files. The
ASHRAE climate files are a result of the ASHRAE RP-1325 [2] and year three identifies the 3™ worst
year in terms of hygrothermal impact on building components out of a 30 year dataset.

Examples of these datasets are shown in Figure 1 and Figure 2 for Chicago. Illustrations of the other
weather datasets and indoor climate information can be found in Appendix A-1 in Figure 26 to Figure 40.
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Figure 1: Temperature and relative humidity in the Chicago climate dataset
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Figure 2: Solar radiation and driving rain in the Chicago climate dataset

2.1.2 Indoor Climate

The indoor climate was derived from the outdoor climate with the ASHRAE 160 intermediate method [1].
It was assumed that the indoor climate is controlled with a heat, air conditioning and ventilation (HVAC)
system. The specified temperature range was set to values between 21.1 °C and 23.9 °C. The maximum
relative humidity was set to 55%.
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Figure 3: Indoor temperature and relative humidity for Chicago climate

Figure 3 shows the resulting indoor temperature and relative humidity boundary conditions for Chicago.
Ilustrations of the other indoor climate datasets can be found in Appendix A-1 as well.

2.2 MODELLED WALL ASSEMBLIES

The modelled wall assemblies consisted of the following material layers:
* Brick old (4”)
* Air Layer (1) ventilated with 50 air changes per hour (ACH) of outdoor air
* WRB (0.5 perm in CZ 2 and 50 perm in CZs 3, 4, and 5)
* Oriented Strand Board or Exterior Gypsum (0.5”)
* (lass Fiber Batt Insulation (3.5” in CZ 2 and 5.5” in CZs 3, 4, and 5)
¢ Kraft Paper as interior vapor retarder in climate zones 3, 4, and 5
*  Gypsum Board (USA) with 8 perm interior paint (0.5)

The baseline simulations were conducted with Exterior Gypsum sheathing. Some variants for the Chicago
and Houston climates were modelled with Oriented Strand Board sheathing. The insulation thickness was
adjusted to fulfil IECC 2015 [3] code requirements which resulted in a 2x4 wall with an R-value of 13 for
Houston and a 2x6 wall with an R-value of 20 everywhere else. The modelled assemblies and climate
specific settings are shown in Figure 4 and Figure 5.

Houston Atlanta, Baltimore, Seattle*, Chicago*
e 2x4 with brick cladding *  2x6 with brick cladding
*  With 0.5 perm WRB *  With 50 perm WRB
* No interior vapor retarder




¢ *With kraft paper as interior vapor
retarder
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Figure 4: 2x4 Wall with OSB sheathing Figure 5: 2x6 Wall with OSB sheathing

2.3 MODELLING OF MATERIAL PROPERTIES

All material properties were chosen from the WUFI® material database according to the previously
described material names list in Chapter 2.2. The material properties of the switchable membrane were
adjusted from a regular WRB membrane. The important material property of this layer is the water vapor
permeability. As thin layers in WUFI need to be modelled with a thickness of at least 1 mm for reasons of
numerical stability, the WRB material properties were converted to a layer of 1 mm thickness.

From discussions with the project partners, the low and high permeance values of the switchable
membrane were set to 0.5 perm and 50 perms (i.e., permeability of 0.02 perm-in and 1.96 perm-in with an
assumed material layer thickness of 1 mm), respectively. In an initial discussion, it was decided to switch
the permeance based on the relative humidity of the exterior sheathing which can be used as a proxy for
the moisture content of the material, with a switching point of 80% relative humidity. Thus, the
switchable membrane had a permeance of 50 perms when the RH of the exterior sheathing was lower
than 80% and vice versa as shown in Figure 6.
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Figure 6: Permeability of the switchable membrane as a function of the relative

humidity

As WUFI® only accepts a dependency of material properties based on conditions right at the specific
location inside the material, the originally intended switching control based on the sheathing relative
humidity could not be implemented. The control had to be implemented based on the RH inside the
membrane. In case the RH drops from above 80% to below 80% over the thickness of the material layer,
part of the layer (i.e. the switchable membrane) will be modelled as impermeable and part of the layer as
permeable, resulting in an only partially/delayed working switch and control. This is visualized in Figure
7.
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Figure 7: Graphical visualization of a detail of the wall section with a partially switched membrane with an RH drop in the
control range over the thickness of the membrane

Therefore, a new approach to model the switchable membrane was developed. As the vapor pressure
difference between the sheathing and the air layer should really determine the switch a double layer
approach with integrated logic was chosen. With two artificial 1 mm thick layers with different material
properties the desired behavior of the switching membrane could be modelled. For this the permeability
of the open and closed state of each of the 1 mm layers had to be re-computed to represent 50 perms (or
the chosen maximum perm value) if both are open and 0.5 perm if both are closed.
The logic was created in a way that:
e  Whenever the humidity in the air gap is high and low in the sheathing, the membrane should be
closed (less permeable).
e  Whenever the humidity in the air gap is low and high in the sheathing, the membrane should be
open (permeable).
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Figure 8: Two-layer approach and resulting logic to model the desired switching behavior

This resulted in the material characteristics and control logic visualized in Figure 8 with a membrane
layer with high permeance in humidity ranges below the switching point and low permeance in humidity
ranges above the switching point facing the air gap and a second membrane with low permeance in
humidity ranges below the switching point and high permeance in humidity ranges above the switching
point facing the sheathing. As a result, the two above described cases result in a fully open or fully closed
membrane as desired. However, there are also intermediate closed states (with half the closed
permeability) whenever humidities of the air layer and the sheathing are either both low or both high.

2.4 OTHER BOUNDARY CONDITIONS

Further boundary conditions for the simulation are:

¢ Default surface transfer resistances for walls

¢ Default rain load on walls according to ASHRAE 160, but orientation of the wall towards the
direction with highest rain loads (all East, except Seattle where it is South)

* Short-wave radiation absorptivity: 0.68 (for a brick wall)

¢ Initial conditions according to ASHRAE 160 (EMC 80, except brick at two times EMC at 80%
RH)
Simulation period: 5 years with hourly time steps and adaptive time step control, starting on
October 1%



2.5 PARAMETRIC COMBINATIONS

The parametric set-up for the simulations was designed to compare various cases with WRBs with fixed
and switchable permeabilities. The cases assessed how climate zone, type of sheathing (OSB or Gypsum),
rain leakage, switching point and the upper switching perm rating impact the effectiveness of the
switchable membrane. Table 1 shows the 21 cases that were evaluated.

Table 1: Matrix with all simulation selections
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Sheathing
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WRB

Upper Switchin,
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3.1

3.

GENERAL RESULTS ASSESSMENT

RESULTS ASSESSMENT AND PLAUSIBILITY CHECK

To achieve the goals outlined in chapter 1, several output parameters of the hygrothermal simulation were
considered. Figure 9 shows a screenshot of an example of an assembly with the parameters that were used
to analyze the simulation results.



Location: Chicago, IL; ASHRAE Year 3; 0.0 °C; WUFI&
Chicago WRB05_OSB

aq T L |
40 - Heat/Moisture Flux on Surface
[Wim®] » Heat Flux during Heating
>13$: 5 2% » Heat Flux during Cooling
sooll £ o » Moisture Flux during Cooling
250H £
o~ " 20
500 "\“ : . 100
[mm/h] \ Maximum Mold Indexin year 4
>100 400

= |nterface exterior sheathing/
insulation

» Interface insulation / vapor
retarder or interior gypsum

/,
:

@
(=]

-
|

Water Content [kg/m?]
N
=]
=)

[y
s
=)
Rel. Humidjty [

0.1H 100 20
PEE—
0.01- ol e !'_"— — 0
104 210112 14 - Total Water Content
Brick  Air Layer 26 mm Kiat Paper = Difference first / last year
Oriented Strand Board ypsum Boar » Sheathingwater content

Low Density Glass Fiber Batt Insulation
Cross Section [cm]

Figure 9: Screenshot of an example of a wall assembly modelled with WUFI with indicators of the simulated parameters that
were assessed

Mold growth was assessed at the interface between the sheathing and the insulation in the cavity as well
as at the interface between cavity insulation and interior gypsum or vapor retarder. To assess the mold
growth, the hourly temperature and relative humidity conditions at that interface are exported to the
WUFI VTT postprocessor which uses the VIT Technical Research Center of Finland mold model [4]
according to ASHRAE Standard 160 [1]. The settings that were used to assess mold growth were
conservative; that is, a sensitive material class and a decline factor of 0.1 were selected. The settings
chosen to assess mold growth are shown in Figure 10.

Occupant exposition dass

ASHRAE 180 reguirements v
Wooden or natural materials - Other materials  ASHRAE Standard 160

Pine sapwood w User defined

Sensitivity Class

() Very sensitive (®) Sensitive
(") Medium resistant (") Resistant
Material Class
(") Significant dedine () Relevant dedline
(C) Relatively low dedline (®) Almost no dedine
(") User defined 0.1
Type of wood
Softwood Hardwood
User defined 1

Figure 10: Screenshot of the settings selected for mold growth assessment in the WUFI VTT post-process module



The maximum mold index (MI) in the fourth full year of the simulations was compared for the 21 cases,
i.e. January to December 2022 with a simulation start date of October 2018. A mold index of 0 means no
mold growth, maximum mold index is 6 and with a mold index above 3 visible mold growth can be
assumed.

Another indicator for moisture related problems is the moisture content (MC) of the sheathing. To
compare the cases, the mean moisture content of the sheathing as well as the hours above a certain
moisture limit (18 Mass-% for OSB and 1 Mass-% for gypsum sheathing) in the fourth year of the
simulation were calculated.

The energy impact was determined by looking at the heat flux through the interior surface of the wall. An
example of a heat flux density graph is shown in Figure 11. The heat flux must be separated for heating
and cooling season. Heating and cooling season are determined by indoor conditions at the set-points.
Figure 12 is an example of indoor conditions in Chicago. Negative heat flux density (energy loss from
indoors to the wall component) add to heating loads during the heating season (indoor temperatures at
lower set-point), positive heat flux density and moisture flux density (sensible or latent heat gain from the
wall component to the indoor space) add to the cooling loads during cooling season (indoor temperatures
at upper set-point).

Chicago with Gypsum Sheathing - Heat Flux Density on Inside Surface

colour

== no switch

= switch

Heat Flux Density on inside surface [W/m2]

-10-
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Time

Figure 11: Example of heat flux densities for a wall in Chicago
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Figure 12: Indoor temperature in Chicago with color code for heating (red), cooling (blue) and free-float (burgundy) times

This analysis results in cumulative gains/losses per year. Figure 13 shows the cumulative heat gains
(positive: during cooling season) and heat losses (negative: during heating season) for an example case in
Chicago. Figure 14 shows the cumulative moisture flux from the wall into the room for the same

example.
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Figure 13: Cumulative sensible heat gains/losses for an
example case in Chicago
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3.2 PLAUSIBILITY CHECK OF THE SWITCHING METHOD

To check the method to model the switching of the membrane as described in Section 2.3, a plausibility
check was conducted. Plotting the moisture flux density through the membrane versus the vapor pressure
difference between outside and inside allows a check of the method. Whenever the vapor pressure
difference is high, i.e. the air in the air space is humid and the sheathing is dryer, the switchable
membrane should be closed (i.e. impermeable) and the resulting moisture flux density should be low.
Whenever the vapor pressure in the air layer is lower than the vapor pressure in the sheathing, the
membrane should be open (i.e. permeable) to allow diffusion from sheathing to ventilated air space and
therefore drying. The moisture flux density through the membrane vs. the vapor pressure difference
between outside and inside is shown in Figure 15. The graph shows that the modelled moisture flux
approaches the red line, which indicates the expected low moisture flux with a 0.5-perm membrane when
the vapor pressure in the air layer is higher than in the sheathing (positive vapor pressure difference in
Figure 15). In contrast, the blue line indicates the expected high moisture flux with a 50-perm membrane
when the vapor pressure in the air layer is lower than in the sheathing (negative vapor pressure difference
in Figure 15). The graph also shows the cases when the switching as realized in the software only
partially works; this is the case when the simulated moisture flux density approaches the green line, which
indicates when only one membrane of the two-membrane system is closed and the other one is open. For
example, all values close to the green line with negative vapor pressure difference mean, that both, the air
layer was below 80% RH and the sheathing was below 80% RH but with the sheathing more humid than
the air layer (assuming the same temperature), which caused one of the two membranes to close (see logic
in Section 2.3), leading to a missed opportunity for further drying. Without the limitations of the
simulation software, those values could be eliminated, leading to an even better performance of the
switchable membrane under real life conditions. The results are therefore considered conservative.

Lower vapor pressure
outside but also low
sheathing RH = half

closed (low flux) and Higher vapor pressure
**" missed opportunity to outside < closed (low flux)
dry

RHmemEx

80

Oe+00-
60

40

Moisture Flux Density on Membrane [kg/s m2]

e 07 | || Lower vapor pressure
outside 2 open (high flux)

-1000 0 1000 2000
Vapor Pressure Difference out - in [Pa]
Figure 15: Moisture flux density on membrane versus vapor pressure difference outside-inside for an exemplary case with
switchable membrane including explaining remarks. Red line indicates expected moisture flux at 0.5 perm and blue line expected
moisture flux at 50 perm.
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4. RESULTS AND DISCUSSION

In the following section, result graphs for mold index as well as tables with comparison values for the 21
cases listed in Chapter 3 are presented without further description or assessment. Each subchapter ends
with a short discussion of the results.

4.1 IN-DEPTH ANALYSIS CZ 2 AND 5

A comparison between wall assemblies with different sheathing materials was conducted for Houston
(CZ 2) and Chicago (CZ 5).

4.1.1 Houston

The mold index for the wall with OSB sheathing in Houston is shown in Figure 16. No mold growth is
found for either case.

Houston with OSB Sheathing - Mold Index (Case 1 and 2)

on Inside on Sheathing
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Figure 16: Mold index at the interface between interior gypsum and cavity insulation (inside) and interface between OSB
sheathing and cavity insulation (on Sheathing) for the case with static (no switch = red) and with switchable (with switch = blue)
membrane in Houston

Table 2 summarizes assessment values for the wall with OSB sheathing in Houston.

Table 2: Assessment values for the comparison between static (no switch) and switchable (with switch) membrane as WRB on
OSB sheathing in Houston

0.0 0.0
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The mold index for the wall with exterior gypsum sheathing in Houston is shown in Figure 17.

Houston with Gypsum Sheathing - Mold Index (Case 3 and 4)
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Figure 17: Mold index on interface between interior gypsum and cavity insulation (inside) and interface between exterior
gypsum sheathing and cavity insulation (on Sheathing) for the case with static (no switch = red) and with switchable (with switch
= blue) membrane in Houston

Table 3 summarizes assessment values for the wall with exterior gypsum sheathing in Houston.

Table 3: Assessment values for the comparison between static (no switch) and switchable (with switch) membrane as WRB on

exterior gypsum sheathing in Houston
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0.16 0.05

0.0 0.0

-9.67 -9.66
8.14 8.12
676.7 965.9
3.31 3.20
458 208

4.1.2 Chicago

The mold index for the wall with OSB sheathing in Chicago is shown in Figure 18.

Chicago with OSB Sheathing - Mold Index (Case 5 and 6)
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Figure 18: Mold index at the interface between interior gypsum and cavity insulation (inside) and interface between OSB
sheathing and cavity insulation (on Sheathing) for the case with static (no switch = red) and with switchable (with switch = blue)
membrane in Chicago

Table 4 summarizes assessment values for the wall with OSB sheathing in Chicago.
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Table 4 Assessment values for the comparison between static (no switch) and switchable (with switch) membrane as WRB on
OSB sheathing in Chicago

o

The mold index for the wall with exterior gypsum sheathing in Chicago is shown in Figure 19.

Chicago with Gypsum Sheathing - Mold Index (Case 7 and 8)
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Figure 19: Mold index at the interface between interior gypsum and cavity insulation (inside) and interface between exterior
gypsum sheathing and cavity insulation (on Sheathing) for the case with static (no switch = red) and with switchable (with switch
= blue) membrane in Chicago

Table 5 summarizes assessment values for the wall with exterior gypsum sheathing in Chicago.



Table 5: Assessment values for the comparison between static (no switch) and switchable (with switch) membrane as WRB on

exterior gypsum sheathing in Chicago
2.21 0.23

2.69 0.02

-21.03 -21.00
2.37 2.29
346.1 198.3
7.0 5.7
4285 2015

4.1.3 Discussion on Baseline Simulations and Construction Types

In CZ 2A, the outdoor vapor pressure is so high most of the time, that an impermeable WRB, which was
used for the baseline case, is sufficient. That means that most of the time the outdoor relative humidity is
higher than the relative humidity in the sheathing; thus, the switch of the membrane is rarely activated,
and the membrane remained at its high permeability state. Therefore, the proposed wall section performs
well with the static WRB and no moisture issues are expected.

In CZ 5A, the OSB slows down the vapor diffusion. This can lead to higher RH at the interface between
the insulation and the OSB sheathing due to water vapor diffusion from indoors during the winter. It also
reduces the drying capacity of the cavity. However, after rain events the cavity is loaded way slower,
which leads to overall lower moisture conditions.

In summary it is found that the application of a switchable WRB reduces the vapor drive into the wall
cavity when the relative humidity is high outdoors. It therefore reduces the mold growth risk significantly.
The riskier system seems to be the one with exterior gypsum board. Further assessments are therefore
based solely on this system.

4.2 CLIMATE ZONE COMPARISON

4.2.1 Atlanta

The mold index for the wall with exterior gypsum sheathing in Atlanta is shown in Figure 20.
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Atlanta with Gypsum Sheathing - Mold Index (Case 9 and 10)
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Figure 20: Mold index at the interface between interior gypsum and cavity insulation (inside) and interface between exterior
gypsum sheathing and cavity insulation (on Sheathing) for the case with static (no switch = red) and with switchable (with switch
= blue) membrane in Atlanta

Table 6 summarizes assessment values for the wall with exterior gypsum sheathing in Atlanta.

Table 6: Assessment values for the comparison between static (no switch) and switchable (with switch) membrane as WRB on
exterior gypsum sheathing in Atlanta
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4.2.2 Baltimore
The mold index for the wall with exterior gypsum sheathing in Baltimore is shown in Figure 21.

Baltimore with Gypsum Sheathing - Mold Index (Case 11 and 12)
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Figure 21: Mold index at the interface between interior gypsum and cavity insulation (inside) and interface between exterior
gypsum sheathing and cavity insulation (on Sheathing) for the case with static (no switch = red) and with switchable (with switch
= blue) membrane in Baltimore

Table 7 summarizes assessment values for the wall with exterior gypsum sheathing in Baltimore.

Table 7: Assessment values for the comparison between static (no switch) and switchable (with switch) membrane as WRB on

exterior gypsum sheathing in Baltimore
1.10 0.72

0.12 0
-18.06 -18.01
1.86 1.85
1496.1 359.6
5.20 5.26

19



2039 1417

4.2.3 Seattle

The mold index for the wall with exterior gypsum sheathing in Seattle is shown in Figure 22.

Seattle with Gypsum Sheathing - Mold Index (Case 13 and 14)
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Figure 22: Mold index at the interface between interior gypsum and cavity insulation (inside) and interface between exterior
gypsum sheathing and cavity insulation (on Sheathing) for the case with static (no switch = red) and with switchable (with switch
= blue) membrane in Seattle

Table 8 summarizes assessment values for the wall with exterior gypsum sheathing in Seattle.

Table 8: Assessment values for the comparison between static (no switch) and switchable (with switch) membrane as WRB on
exterior gypsum sheathing in Seattle

3.08 3.01

0.18 0.05
-17.39 -17.43
0.14 0.17
61.3 62.0
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8.13 7.11

4.2.4 Discussion on Climate Zones

The results show that a switchable WRB reduces mold growth risk and average sheathing moisture
content in all climate zones. An assembly with obvious moisture related problems in a certain location
(Seattle) does not necessarily work with a switchable membrane because... The modelled performance
could be improved with better control of the switching point. This would require either a switching point
based on location (i.e. climatic conditions) or switching of the membrane based on actual conditions of
the layers of the building assembly (i.e. measuring vapor pressure difference across membrane).

The switchable WRB has almost no effect on the sensible load in any of the evaluated climate zones; that
is, the wall with static WRB shows a similar heat flux density as the wall with switchable membrane. The
latent load can vary significantly between the static and the switchable WRB but it is negligible compared
to the latent loads that originate from ventilation and indoors.

4.3 IMPACT OF BULK WATER LEAKAGE

Due to workmanship or detailing, there are often leaks in building components. This can be modelled in
WUFI® by adding a moisture source to a layer in the component. To determine if the switchable
membrane shows additional benefits by enabling drying of moisture accumulation due to leakage, a
moisture source was added that deposited 1% of the driving rain into the component in the outer part of
the sheathing.

4.3.1 Bulk water leakage results
The mold index for the wall with exterior gypsum sheathing and 1% bulk water entry in Chicago is

shown in Figure 23 for a baseline case with static WRB and two cases with switchable membrane, one
with a 50 perm maximum and one with a 5 perm maximum.
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Chicago with Gypsum Sheathing and 1 % Leakage - Mold Index (Case 15to 17)
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Figure 23: Mold index at the interface between interior gypsum and cavity insulation (inside) and interface between exterior
gypsum sheathing and cavity insulation (on Sheathing) for the case with static (no switch = red) and with switchable membrane
with maximum 50 perm (blue) or 5 perm (green) in an assembly where 1% of the driving rain leaks onto the WRB in Chicago

Table 9 summarizes assessment values for the wall with 1% rain penetration and with exterior gypsum
sheathing in Chicago with two different maximum permeabilities.

Table 9: Assessment values for the comparison between static (no switch) and switchable (with switch) membrane with maximum
50 perm and 5 perm as WRB on exterior gypsum sheathing in Chicago with 1% leakage of driving rain deposited on the
sheathing
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4.3.2 Discussion bulk water leakage

When water leakage from driving rain occurs, high air layer RH and sheathing RH coincide. Therefore,
the switchable membrane remains impermeable (closed) and the switchable membrane did not have a
significant impact. However, the implemented switch control of the membrane prevents additional drying
of the sheathing once the sheathing RH is below 80%. This could be improved with control based on
vapor pressure difference in a real-life application.

The energy impact (sensible loads) is still minimal, even with the high moisture content at the
sheathing/insulation layer.

4.4 IMPACT OF PERMEANCE OPTIONS AND SWITCHING POINTS FOR SWITCHABLE
MEMBRANES

4.4.1 Switching point results

The mold index for the wall with exterior gypsum sheathing and three different switching point relative
humidity values (i.e., 80%, 65%, and 50%) in Chicago are shown in Figure 24.

Chicago with Gypsum Sheathing and Different Switching Points - Mold Index (Case 7, 8 and 18, 19)
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Figure 24: Mold index at the interface between interior gypsum and cavity insulation (inside) and interface between exterior
gypsum sheathing and cavity insulation (on Sheathing) for the case with static (no switch = red) and with switchable membrane
with switching at relative humidity of 50% (orange), 65% (green) and 80% (blue) in Chicago

Table 10 summarizes assessment values for the wall with exterior gypsum sheathing in Chicago for three
different switching point relative humidity values.
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Table 10: Assessment values for the comparison between static (no switch) and switchable (with switch) membrane as WRB with
switching points at 50%, 65% and 80% RH on exterior gypsum sheathing in Chicago

2.69

-21.03

346.1

7.0

4285

4.4.2 Switching perm results
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The mold index for the wall with exterior gypsum sheathing and three different maximum permeance
values (i.e., 50, 20 and 5 perms) in Chicago are shown in Figure 25.

Chicago with Gypsum Sheathing and Different Switching RHs - Mold Index (Case 7, 8 and 20, 21)
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Figure 25: Mold index at the interface between interior gypsum and cavity insulation (inside) and interface between exterior
gypsum sheathing and cavity insulation (on Sheathing) for the case with static (no switch = red) and with switchable membrane
with maximum permeance of 5 perm (orange), 20 perm (green) and 50 perm (blue) in Chicago

Table 11 summarizes assessment values for the wall with exterior gypsum sheathing in Chicago for three
different switching permeance values.

Table 11: Assessment values for the comparison between static (no switch) and switchable (with switch) membrane as WRB with
maximum permeance values at 5 perm, 20 perm and 50 perm on exterior gypsum sheathing in Chicago

2.69 0.02 0.02 1.01
-21.03 -21.00 -21.02 -21.00
2.37 2.29 2.29 2.34
346.1 198.3 198.0 306.2
7.0 5.7 5.9 6.5
4285 2015 2360 3198

4.4.3 Discussion on the impact of switching maximum permeance and switching point

With a lower switching point, drying towards the outside starts later after the sheathing has gained more
moisture during winter month. This results in longer periods with higher RH/MC in the sheathing and a
higher mold growth risk. The results indicate that there is an optimum switching point for every climate
zone (if switching is controlled by RH of the sheathing and not by the vapor pressure difference between
the sheathing and the ventilated air space). The 50 perm and 20 perm maximum permeance values for the
membrane behave almost similarly. The WRB with switch of maximum 20 perm accumulates more
moisture in the winter as it is less permeable with temperature dependent vapor drive. It dries out in a way
that the mold index for the simulated case does not accumulate. The WRB with switch of maximum 5
perm is too impermeable to allow the cavity to dry out the combined moisture load due to diffusion from
indoor sources during the winter and solar driving moisture from outdoors during the summer. This
results in moderate mold growth at the sheathing/insulation and insulation/vapor retarder interfaces.

5. SUMMARY AND CONCLUSIONS

This study evaluated the effect of a water-resistive barrier (i.e. exterior of the exterior sheathing material
in a wood frame wall where it may also be exposed to liquid water) membrane that can switch its water
vapor permeability on moisture conditions, mold growth potential and energy demand. Modelling the
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functionality of the switchable membrane is not possible in a direct way with the selected simulation
model WUFI® (and no other commercially available hygrothermal component simulation model).
Therefore, some workarounds were developed that allowed modelling the switchable membrane with a
conservative approach. Switching the membrane properties means introducing a step change in the
simulation model that can result in numerical stability issues. This was successfully resolved by using an
adaptive time-step control. The control of the switch is implemented by changing material properties at a
certain relative humidity and a two-layer approach to model the membrane. As a consequence, a fully
open state of the membrane is not always modeled whenever it would be beneficial for drying which
leads to conservative simulation results. A switch that is controlled by vapor pressure difference would
improve the performance and be a less conservative approach for the simulation but cannot be
implemented in the current version of WUFI Pro.

The simulation study shows that the switchable membrane can reduce the water content in the sheathing
and reduce the mold growth risk in the cavity in all climate zones. The effect of the switchable membrane
on energy use is small. The differences in sensible losses/gains in heating/cooling period are very small
even in cases with a high moisture level. Significant differences in latent gains during cooling period were
observed, but those were orders of magnitudes lower than moisture loads from ventilation and interior
loads.

The ideal switching point is climate dependent. The switching should be initiated by measured vapor
pressure difference across the membrane for practical applications. The maximum (i.e. 50 perm) and
minimum (i.e. 0.5 perm) permeance values appear to be the only necessary switching permeances,
intermediate states are not required to achieve full performance of the membrane. The acceptable range
for the maximum permeance is expected to be climate dependent. One example case was computed and
still shows good performance in climate zone 5A with a maximum permeance of 20 perm.

Further benefits during the presence of additional moisture sources in the cavity were not observed. With
a moisture source based on driving rain, high moisture levels inside and outside of the WRB occur at the
same time. The switching point needs to be higher than 80% when the sheathing has high RH. With a
control that is based on vapor pressure difference and moisture sources independent from driving rain a
more beneficial behavior is expected. The same applies to constructions that show high moisture levels
due to insufficient design that leads to moisture problems as in those cases the full potential of the
switchable membrane is utilized.
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APPENDIX A. Weather Data
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Figure 26: Exterior Temperature and relative humidity from climate file for Houston
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Figure 28: Indoor temperature and relative humidity for Houston
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Chicago
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Figure 29: Exterior Temperature and relative humidity from climate file for Chicago
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Figure 31: Indoor temperature and relative humidity for Chicago
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Atlanta
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Figure 32: Exterior Temperature and relative humidity from climate file for Atlanta
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Figure 34: Indoor temperature and relative humidity for Atlanta
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Baltimore
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Figure 35: Exterior Temperature and relative humidity from climate file for Baltimore
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Figure 36: Solar and wind driven rain exposure from climate file for Baltimore
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Figure 37: Indoor temperature and relative humidity for Baltimore



Seattle
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Figure 38: Exterior Temperature and relative humidity from climate file for Seattle
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Figure 39: Solar and wind driven rain exposure from climate file for Seattle
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Figure 40: Indoor temperature and relative humidity for Seattle
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